DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures.

نویسندگان

  • Michael Faller
  • Daniel Toso
  • Michio Matsunaga
  • Ivo Atanasov
  • Rachel Senturia
  • Yanqiu Chen
  • Z Hong Zhou
  • Feng Guo
چکیده

DiGeorge critical region 8 (DGCR8) is essential for maturation of microRNAs (miRNAs) in animals. In the cleavage of primary transcripts of miRNAs (pri-miRNAs) by the Drosha nuclease, the DGCR8 protein directly binds and recognizes pri-miRNAs through a mechanism currently controversial. Our previous data suggest that DGCR8 trimerizes upon cooperative binding to pri-mir-30a. However, a separate study proposed a model in which a DGCR8 molecule contacts one or two pri-miRNA molecules using its two double-stranded RNA binding domains. Here, we extensively characterized the interaction between DGCR8 and pri-miRNAs using biochemical and structural methods. First, a strong correlation was observed between the association of DGCR8 with pri-mir-30a and the rate of pri-miRNA processing in vitro. Second, we show that the high binding cooperativity allows DGCR8 to distinguish pri-miRNAs from a nonspecific competitor with subtle differences in dissociation constants. The highly cooperative binding of DGCR8 to a pri-miRNA is mediated by the formation of higher-order structures, most likely a trimer of DGCR8 dimers, on the pri-miRNA. These properties are not limited to its interaction with pri-mir-30a. Furthermore, the amphipathic C-terminal helix of DGCR8 is important both for trimerization of DGCR8 on pri-miRNAs and for the cleavage of pri-miRNAs by Drosha. Finally, our three-dimensional model from electron tomography analysis of the negatively stained DGCR8-pri-mir-30a complex directly supports the trimerization model. Our study provides a molecular basis for recognition of pri-miRNAs by DGCR8. We further propose that the higher-order structures of the DGCR8-pri-miRNA complexes trigger the cleavage of pri-miRNAs by Drosha.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The DGCR8 RNA-binding heme domain recognizes primary microRNAs by clamping the hairpin.

Canonical primary microRNA transcripts (pri-miRNAs) are characterized by a ∼30 bp hairpin flanked by single-stranded regions. These pri-miRNAs are recognized and cleaved by the Microprocessor complex consisting of the Drosha nuclease and its obligate RNA-binding partner DGCR8. It is not well understood how the Microprocessor specifically recognizes pri-miRNA substrates. Here, we show that in ad...

متن کامل

Npgrj_NSMB_1182 23..29

MicroRNAs (miRNAs) regulate the expression of a large number of protein-coding genes. Their primary transcripts (pri-miRNAs) have to undergo multiple processing steps to reach the functional form. Little is known about how the processing of miRNAs is modulated. Here we show that the RNA-binding protein DiGeorge critical region-8 (DGCR8), which is essential for the first processing step, is a he...

متن کامل

Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing

DGCR8/Pasha is an essential cofactor for Drosha, a nuclear RNase III that cleaves the local hairpin structures embedded in long primary microRNA transcripts (pri-miRNAs) in eukaryotes. Although our knowledge of pri-miRNA processing has significantly advanced in recent years, the precise role of DGCR8 in this pathway remains unclear. In our present study, we dissect the domains in DGCR8 that con...

متن کامل

Processing of microRNA primary transcripts requires heme in mammalian cells.

DiGeorge syndrome critical region gene 8 (DGCR8) is the RNA-binding partner protein of the nuclease Drosha. DGCR8 and Drosha recognize and cleave primary transcripts of microRNAs (pri-miRNAs) in the maturation of canonical microRNAs (miRNAs) in animals. We previously reported that human, frog, and starfish DGCR8 bind heme when expressed in Escherichia coli and that Fe(III) heme activates apoDGC...

متن کامل

Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing.

The RNA-binding protein DiGeorge Critical Region 8 (DGCR8) and its partner nuclease Drosha are essential for processing of microRNA (miRNA) primary transcripts (pri-miRNAs) in animals. Previous work showed that DGCR8 forms a highly stable and active complex with ferric [Fe(III)] heme using two endogenous cysteines as axial ligands. Here we report that reduction of the heme iron to the ferrous [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 16 8  شماره 

صفحات  -

تاریخ انتشار 2010